Journal article
Description

Buildings consume nearly 40% of primary energy production globally. Certified green buildings substantially reduce energy consumption on a per square foot basis and they also focus on indoor environmental quality. However, the co-benefits to health through reductions in energy and concomitant reductions in air pollution have not been examined. We calculated year by year LEED (Leadership in Energy and Environmental Design) certification rates in six countries (the United States, China, India, Brazil, Germany, and Turkey) and then used data from the Green Building Information Gateway (GBIG) to estimate energy savings in each country each year. Of the green building rating schemes, LEED accounts for 32% of green-certified floor space and publically reports energy efficiency data. We employed Harvard's Co-BE Calculator to determine pollutant emissions reductions by country accounting for transient energy mixes and baseline energy use intensities. Co-BE applies the social cost of carbon and the social cost of atmospheric release to translate these reductions into health benefits. Based on modeled energy use, LEED-certified buildings saved $7.5B in energy costs and averted 33MT of CO2, 51 kt of SO2, 38 kt of NOx, and 10 kt of PM2.5 from entering the atmosphere, which amounts to $5.8B (lower limit = $2.3B, upper limit = $9.1B) in climate and health co-benefits from 2000 to 2016 in the six countries investigated. The U.S. health benefits derive from avoiding an estimated 172-405 premature deaths, 171 hospital admissions, 11,000 asthma exacerbations, 54,000 respiratory symptoms, 21,000 lost days of work, and 16,000 lost days of school. Because the climate and health benefits are nearly equivalent to the energy savings for green buildings in the United States, and up to 10 times higher in developing countries, they provide an important and previously unquantified societal value. Future analyses should consider these co-benefits when weighing policy decisions around energy-efficient buildings.

Identifiers: 
DOI: 
10.1038/s41370-017-0014-9
Issue: 
28
Pagination: 
307-318
Access Rights Type: 
Pay-per-view required
License Type: 
All Rights Reserved
Language: 
English
Peer Reviewed: 
Yes
0
Share
Application
Scale
Systems
Geographic Coverage