Journal article

Emissions of volatile sulfur compounds (VSCs) throughout wastewater biosolids processing

02 Nov 2017
Description

Volatile sulfur compounds (VSCs) are important contributors to nuisance odours from the processing of wastewater sludge and biosolids. However, emission characteristics are difficult to predict as they vary between sites and are likely to be affected by biosolids processing configuration and operation.
VSC emissions from biosolids throughout 6 wastewater treatment plants (WWTPs) in Sydney, Australia were examined in this study. H2S was the VSC found at the highest concentrations throughout the WWTPs, with concentrations ranging from 7 to 39,000 μg/m3. Based on odour activity values (OAVs), H2S was typically also the most dominant odorant. However, methyl mercaptan (MeSH) was also found to be sensorially important in the biosolids storage areas given its low odour detection threshold (ODT). High concentrations of VOSCs such as MeSH in the storage areas were shown to potentially interfere with H2S measurements using the Jerome 631-X H2S sensor and these interferences should be investigated in more detail. The VSC composition of emissions varied throughout biosolids processing as well as between the different WWTPs. The primary sludge and biosolids after dewatering and during storage, were key stages producing nuisance odours as judged by the determination of OAVs. Cluster analysis was used to group sampling locations according to VSC emissions. These groups were typically the dewatered and stored biosolids, primary and thickened primary sludge, and waste activated sludge (WAS), thickened WAS, digested sludge and centrate. Effects of biosolids composition and process operation on VSC emissions were evaluated using best subset regression. Emissions from the primary sludge were dominated by H2S and appeared to be affected by the presence of organic matter, pH and Fe content. While volatile organic sulfur compounds (VOSCs) emitted from the produced biosolids were shown to be correlated with upstream factors such as Fe and Al salt dosing, anaerobic digestion and dewatering parameters.

Identifiers: 
DOI: 
10.1016/j.scitotenv.2017.10.282
Volume: 
Volumes 616–617
Pagination: 
622-631
Duration: 
March 2018
Access Rights Type: 
Pay-per-view required
License Type: 
All Rights Reserved
Language: 
English
Share
Application
Geographic Coverage