08 May 2019

Overheating of cities is causing serious energy, environmental and health problems and it has a serious impact on the whole economic and cultural life of cities. To counterbalance the impact of high urban temperatures several mitigation technologies have been proposed, developed and implemented.

Report
28 Dec 2015

Cities are frequently experiencing artificial heat stress, known as the Urban Heat Island (UHI) effect. The UHI effect is commonly present in cities due to increased urbanization, where anthropogenic heat and human modifications have altered the characteristics of surfaces and atmosphere.

Journal article
16 Apr 2014

The Urban Heat Island (UHI) effect can result in higher urban densities being significantly hotter (frequently more than 4 °C, even up to 10 °C) compared to their peri-urban surroundings. Such artificial heat stress increases the health risk of spending time outdoors and boosts the need for energy consumption, particularly for cooling during summer.

Journal article
11 Dec 2015

Urban spaces are experiencing warmer microclimates as the combined result of climate change and the Urban Heat Island (UHI) effect. While climate change projections indicate a likely increase of 2°C in Australia by 2070, an additional heat load of 10°C exists in the built environment.

Conference paper
10 May 2019

The present study is aiming to pre-design and optimize a smart climatic street in Parramatta, named Phillip st., exhibiting high climatic, environmental, and energy performance.

Report
11 May 2017

There is ample evidence of the cooling effects of green infrastructure (GI) that has been extensively documented in the literature. However, the study of the thermal profiles of different GI typologies requires the classification of urban sites for a meaningful comparison of results, since specific spatial and physical characteristics produce distinct microclimates.

Conference paper
22 Nov 2018

Despite the current evidence on the thermal benefits of vegetation and water bodies, further research is needed to investigate how cooling capacities are influenced by particular types, amounts, and spatial arrangements of green infrastructure (GI). However, there are no commonly agreed typologies that can be confidently used to compare and report the existing climatological effects of GI.

Journal article
24 Jul 2015

After the full urbanization of the Seoul during the late 1980s several new towns where established outside the Greenbelt. Several push-and-pull factors have followed and influenced the rapid urbanization of the capital region of Korea. Currently more than 23 Million inhabitants are living in the Seoul Metropolitan Area (SMA).

Conference paper
21 Nov 2016

Climate change projections indicate a likely 3.8°C increase in the average temperature in Australia by 2090. During summer, outdoor heat-stress causes significant thermal discomfort, altering outdoor living preferences. This paper aims to explore the neutral and critical thresholds for outdoor thermal adaptation.

Conference paper
18 Nov 2016

During summer heatwaves, public spaces are frequently warmer than human thermal comfort preferences in a majority of Australian Cities. Citizens’ preferences of public space elements and supportive features during heat-stress conditions are under particular focus in this paper.

Conference paper
11 Jul 2014

Australia has had seven extreme heatwaves since the beginning of the 20th century. During heatwaves, public spaces in cities are frequently warmer than is confortable for humans. The regional warming projection of 2-5°C in Australia (by 2070) will be added to an existing 4-8°C extra heat in higher urban densities.

Conference paper