Journal article

A data-driven approach for discovering heat load patterns in district heating

10 Jun 2019
Description

Highlights
A data-driven approach is proposed to discover heat load patterns in district heating.
The first large-scale analysis of all the buildings in six different categories is presented.
The authors showcase how typical and atypical behaviors look like in the entire network in Sweden.
The results show that the method has a high potential to be deployed and used in practice.
Abstract
Understanding the heat usage of customers is crucial for effective district heating operations and management. Unfortunately, existing knowledge about customers and their heat load behaviors is quite scarce. Most previous studies are limited to small-scale analyses that are not representative enough to understand the behavior of the overall network. In this work, the authors propose a data-driven approach that enables large-scale automatic analysis of heat load patterns in district heating networks without requiring prior knowledge. The method clusters the customer profiles into different groups, extracts their representative patterns, and detects unusual customers whose profiles deviate significantly from the rest of their group. Using this approach, the authors present the first large-scale, comprehensive analysis of the heat load patterns by conducting a case study on many buildings in six different customer categories connected to two district heating networks in the south of Sweden. The 1222 buildings had a total floor space of 3.4 million square meters and used 1540 TJ heat during 2016. The results show that the proposed method has a high potential to be deployed and used in practice to analyze and understand customers’ heat-use habits.

Volume: 
252
Pagination: 
113409
Duration: 
15 October 2019
Access Rights Type: 
Open
License Type: 
CC BY
Language: 
English
Share
Application
Geographic Coverage